Meromorphic Solutions of Algebraic Difference Equations
نویسندگان
چکیده
منابع مشابه
On meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملMeromorphic solutions of algebraic differential equations
where F is a polynomial in the first k+ 1 variables, whose coefficients are analytic functions of the independent variable z. If the conditions of Cauchy's theorem for the existence and uniqueness of the solution are satisfied, then (0.1) determines an analytic function in a neighbourhood of a given point z0. One of the most difficult problems in the analytic theory of differential equations is...
متن کاملon meromorphic solutions of certain type of difference equations
we mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+p(z)f(z+c)^n=q(z)$, which is a supplement of previous results in [k. liu, l. z. yang and x. l. liu, existence of entire solutions of nonlinear difference equations, czechoslovak math. j. 61 (2011), no. 2, 565--576, and x. g. qi...
متن کاملMeromorphic Solutions of First - Order Algebraic Differential Equations
i. P. Deligne, Usp. Mat. Nauk, 30, No. 5, 159-190 (1975). 2. H. Jacquet andR. P. Langlands, Automorphic Formson GL(2), Springer-Verlag (1970). 3. S. Banach,.Oeuvres, Vol. i, Warsawa (1967), pp. 318-322. 4. G. A. Margulis, Monatsh. Mmth., 9__0, No. 3, 233-235 (1980), 5. D. Sullivan, Bull. Am. Math. Soc., ~, No. i, 121-123 (1981). 6. R. A. Rank_in, Proc. Cambridge Philos. Soc., 35, 351-372 (1939)...
متن کاملGrowth of Meromorphic Solutions of Some q-Difference Equations
and Applied Analysis 3 where |q| > 1 and the index set J consists of m elements and the coefficients a i (z) (a n (z) = 1) and b J (z) are small functions of f. If f is of finite order, then |q| < n + m − 1. 2. Some Lemmas The following important result by Valiron andMohon’ko will be used frequently, one can find the proof in Laine’s book [16, page 29]. Lemma 9. Let f be a meromorphic function....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2017
ISSN: 0176-4276,1432-0940
DOI: 10.1007/s00365-017-9401-7